« Anterior | Principal | Próxima »

Los números a veces mienten

Adrián Fernández | 2011-11-29, 11:31

Lápiz borrando un número

Hace poco tuve la suerte de asistir a una charla sobre la importancia de los números en la comprensión y redacción de las noticias.

Con tantas historias últimamente sobre deudas, déficits, bancarrotas y presupuestos, la clase me pareció muy actual y pertinente.

Aunque las matemáticas sean una ciencia exacta y las operaciones arrojen resultados únicos, es increíble como muchas veces las cifras pueden ser manipuladas o mal interpretadas generando información incorrecta.

Para el disertante, el periodista y autor Michael Blastland, los seres humanos somos muy vulnerable al poder de los números y de los patrones porque hemos evolucionado para ser muy buenos en escoger los patrones, pero muy malos para interpretar los detalles, en este caso las cifras.

La capacidad de los primeros seres humanos en comprender que los patrones de luz entre los arbustos podían ser las rayas de un tigre fue clave para la supervivencia de la especie humana. Era mejor correr, incluso si se estaba equivocado, que quedarse a deliberar y ser devorados. Como resultado, estamos a menudo equivocados y corremos el riesgo de ser engañados, o sea seguimos corriendo siempre, incluso cuando no hay tigres en la maleza.

La cifras en general, cuando se las presenta fuera de contexto o sin la información necesaria, pueden parecer que respaldan cualquier argumento sensacionalista.

Los números grandes son los que mas problemas suelen causar. El consejo es llevarlos a su mínima expresión.

Por ejemplo, si el gobierno británico anuncia que va a realizar un gasto social anual de 3.120 millones de libras aunque parezca a simple vista mucho dinero si hacemos todas las cuentas necesarias no daremos cuenta que, con una población de 60 millones de personas y 52 semanas en el año, la inversión real es de una libra por persona por semana.

Los porcentajes también pueden resultar engañosos, y no siempre tiene que haber una mala intención detrás de quien los presenta, a menudo se trata de errores de interpretación.

El expositor puso el ejemplo de un informe de 2002 que hablaba de un incremento del 6% en el riesgo de contraer cáncer de mama en las mujeres que bebían al menos una copa de alcohol diaria.

Lo que el informe no decía era que normalmente existe un riesgo del 9% de contraer cáncer de mama antes de cumplir los 80 años en todas las mujeres. El 6% de aumento en las mujeres que beben era sobre ese 9%, o sea un 0,54%, un porcentaje bastante bajo y que no hubiera causado la alarma que generó el informe original en la manera en que fue presentado.

Aunque muchas veces pensemos que los promedios nos pintan un panorama aproximado de la realidad, muchísimas veces están alejados de la realidad y terminan sin representar a nadie.

Pensemos que solamente hace falta que haya una sola persona con una pierna para que el promedio de piernas de toda la población sea inferior a dos. Este ejemplo parece muy obvio, pero hay políticos, relacinistas públicos, economistas y un montón de gente experta en manipular promedios.

Y por último, hay que estar bien atentos a los sondeos, aunque pueden ser muy útiles, también pueden omitir algunos factores o pueden ser muy pequeños por lo tanto más susceptibles a errores.

El consejo final no es desechar cualquier noticia o estudio que contenga cifras, sino hacer una pausa, y tratar de ponerla en su debido contexto, aunque nos lleve un poco más de tiempo.

ComentariosAñada su comentario

  • 1. A las 01:26 PM del 29 Nov 2011, Roberto Argentino Escribió:

    Buenos Dias. estoy de acuerdo con la manipulaciòn de las cifras. por ejemplo cuando publican que el Ingreso per càpita de un pais es 5500, deberiamos analizar profundamente esta noticia, porque puede ser un pais con dos habitantes, uno que tiene ingresos de 10000 y otro de 1000, entonces 11000 dividido dos da 5500. La realidad es otra; una gana 10 veces mas que el otro.este ejemplo de dos llevado a franjas de poblaciòn. Entonces como bien dice usted, cuidado con la manipulacion de las cifras, habilidad que tienen los economistas y politicos de cada dia.
    Gracias por haberme leido.

  • 2. A las 07:54 PM del 30 Nov 2011, sergio bravo Escribió:

    Señor editor: por cierto el tema no es menor, los gazapos de este tipo en la prensa escrita son muy frecuentes. A proposito en el artículo de hoy de BBC mundo "Venezuela:hoteles, entre huespedes y damnificados" se lee: "de las aproximadamente 10.000 camas disponibles en Caracas, 868 permanecen ocupadas, lo que equivale a 1.905 habitaciones".

    saludos,

  • 3. A las 06:26 PM del 01 Dic 2011, Ramón Estévez Escribió:

    Si en España también existe mucha confusión a la hora de publicar cifras.
    Ya no solo en la forma de exponerlos, sino en la propia cifra.
    Ya que de un medio a otro puede encontrarse diferencias.
    Me a sorprendido mucho el ejemplo del porcentaje.
    Decir un 0,54% me parece muy distinto del 6%, a saber cuantas perdidas a los comerciantes habrá ocasionado la noticia al principio.

    Si fuera esa cifra ¿Llegaríamos a ver advertencias en las botellas de alcohol?

  • 4. A las 09:39 PM del 02 Dic 2011, Gerardo E. Dulzaides Escribió:

    Soy Especialista en Matematica Aplicada a la Eonomia; y estoy totalmente de acuerdo con el Blog de los Editores de BBCMundo con relacion a que las cifras solo son una representacion de la vida real solo si se manejan adecuadamente y no se manipulan; ademas deben sensibilizarse (bajar el "tono" tecnico) para que todo el mundo los entienda De otro modo estamos mintiendo a la humanidad completa, incluyendonos a nosotros mismos que creemos la falsedad que fabricamos.

  • 5. A las 03:50 AM del 03 Dic 2011, DrangSlav3 Escribió:

    La estadística es esa ciencia que demuestra que si mi vecino tiene dos autos y yo ninguno, los dos tenemos un auto. (G.Bernard Shaw)

  • 6. A las 02:57 AM del 06 Dic 2011, Luis Sepulveda Escribió:

    Cuando se publiquen valores promedios deberían acompañarse con el valor de la desviación estándar que indica que tan alejados están los datos del promedio. Si la desviación estándar es alta indica que los valores están dispersos y no cerca del promedio como en el caso de 1000 y 10000 que da en promedio 5500 con una desviación estándar de 6364. En cambio si hubiese sido dos muestras de 5500 y 5500 el promedio da 5500 y la desviación estándar da 0.

  • 7. A las 07:35 AM del 08 Dic 2011, Adrián García Escribió:

    Me agrado este articulo y es muy cierto lo que menciona el editor, normalmente nos dejamos llevar por las cifras que nos mencionan y le damos poca importancia a los detalles o no realizamos un análisis más exhaustivo, sería bueno analizar a lo largo de nuestra experiencia que cifras nos han mostrado y que hay detrás de ellas, saludos

BBC navigation

BBC © 2014 El contenido de las páginas externas no es responsabilidad de la BBC.

Para ver esta página tal cual fue diseñada, debe utilizar un navegador de internet actualizado, que tenga habilitado el uso de hojas de estilo en cascada (CSS, por Cascading Stylesheets en inglés). Aunque en el navegador que está utilizando podrá ver el contenido de la página, no será presentado de la mejor forma posible. Por favor, evalúe la posibilidad de actualizar su navegador y/o habilitar el uso de CSS.