A' fuasgladh cho-aontaran le camagan

Cuimhnich gun toir thu air falbh na camagan, agus iomadaich an teirm air taobh a-muigh na camaig le gach teirm taobh a-staigh na camaig.

Eisimpleir

Fuasgail an co-aontar \(4(5 - 2x) - 5 = 39\)

Freagairt

\[4(5 - 2x) - 5 = 39\]

Cuimhnich gu bheil CÒRICT ag iarraidh oirnn na camagan a thoirt air falbh an toiseach

\[20 - 8x - 5 = 39\]

Cuimhnich atharraich taobh, atharraich obrachadh

\[- 8x = 39 - 20 + 5\]

\[- 8x = 24\]

\[x = \frac{{24}}{{ - 8}} = \frac{3}{{ - 1}} = - 3\]

Feuch a-nis na ceistean gu h-ìosal.

Question

Fuasgail an co-aontar \(4x - 2(1 - 3x) = 3\)

\[4x - 2(1 - 3x) = 3\]

\[4x - 2 + 6x = 3\]

Cuimhnich nuair a bhios tu a' toirt-air-falbh àireamh àicheil gun dèan thu cur-ris.

\[4x + 6x = 3 + 2\]

Cuimhnich air litrichean gu clì, àireamhan gu deas.

\[10x = 5\]

\[x = \frac{1}{2}\]

Question

Fuasgail an co-aontar \(3(7 - 2x) = 3(x + 5) - 84\)

\[3(7 - 2x) = 3(x + 5) - 84\]

Thoir air falbh na camagan an toiseach.

\[21 - 6x = 3x + 15 - 84\]

Litrichean gu clì, àireamhan gu deas.

\[- 6x - 3x = 15 - 84 - 21\]

\[- 9x = - 90\]

\[x = \frac{{ - 90}}{{ - 9}} = \frac{{10}}{1} = 10\]

Question

Airson an triantain gu h-ìosal, sgrìobh co-aontar anns a bheil \(x^\circ\) agus an uair sin fuasgail e gus meudan nan ceàrn aig gach gob obrachadh a-mach.

Diagram of a triangle with angles of 50˚, 6x˚ and 2x˚ + 34˚

Cuimhnich gu bheil na ceàrnan gu lèir ann an triantan a' dèanamh 180°, mar sin 's e an co-aontar airson an triantain gu h-àrd:

\[(2x^\circ + 34^\circ ) + 6x^\circ + 50^\circ = 180^\circ\]

\[8x^\circ + 84^\circ = 180^\circ\]

\[8x^\circ = 180^\circ - 84^\circ\]

\[8x^\circ = 96^\circ\]

\[x^\circ = \frac{{96^\circ }}{{8^\circ }} = 12^\circ\]

Mar sin 's e na ceàrnan san triantan gu h-àrd 50°, 72° agus 58°.