Ag obrachadh a-mach ceàrn ann an triantan ceart-cheàrnach

Eisimpleir

Lorg \(x^\circ\) gu aon ionad deicheach.

Right-angled scalene triangle with an x° angle, opposite of 8 and a hypotenuse of 10

Freagairt

Ainmich na taobhan an toiseach.

Bhon a tha fios againn air na h-àireamhan air an taobh mu choinneamh agus air a' hypotenuse, feumaidh sinn coimhead airson a' cho-mheas a tha a' cleachdadh an dà thaoibh sin (SMH CDH TMD). Sin an co-mheas sine.

\[\sin (x^\circ ) = \frac{{\text{mu choinneamh}}}{{\text{hypotenuse}}}\]

Thoir an aire gun cuir thu na h-àireamhan dhan àite cheart!

\[\sin (x^\circ ) = \frac{8}{{10}}\]

\[\sin (x^\circ ) = 0.8\]

Ath-rèitich le 'atharraich taobh, atharraich obrachadh'. Nuair a ghluaiseas tu an 'sin' chun an taoibh eile dhen t-samhla 'co-ionann ri', bidh thu a' dol an rathad eile agus 's e sin sin-1 (sin inbhearsach).

\[x^\circ= sin ^{-1 (0.8)}\]

Air an àireamhair, taidhp 'shift' agus an uair sin 'sin' gus sin-1 fhaighinn

\[x^\circ = 53.130...\]

Tha am freagairt an uair sin air a chruinneachadh gu àireamh fhreagarrach de mhionaideachd.

\(x^\circ = 53.1^\circ\) (aon ionad deicheach).

Feuch an t-eisimpleir seo.

Question

Lorg \(x^\circ\).

Thoir do fhreagairt ceart gu aon ionad deicheach.

Right-angled scalene triangle with an x° angle, adjacent of 20 and a hypotenuse of 26

Tha fios againn air an taobh dhlùth agus air a' hypotenuse.

\[\cos (x^\circ ) = \frac{{\text{dlùth}}}{{\text{hypotenuse}}}\]

Ag ionadachadh nan luachan.

\[\cos (x^\circ ) = \frac{{20}}{{26}}\]

\[\cos(x^\circ ) = cos^{-1}(0.769)\]

\[\cos (x^\circ ) = cos ^{-1}(0.769)\]

\[x^\circ = 39.7^\circ (gu\,1\,id.)\]

Move on to Video
next