Lluosi mynegiadau

Lluosi llythrennau

Gall mynegiadau algebraidd gael eu lluosi yn yr un ffordd â rhifau.

\({a}\times{a} = {a}^{2}\),

\({b}\times{b} = {b}^{2}\) ayyb.

Cofia nad ydy \({2a}\) yr un fath ag \({a}^{2}\)

\[{2a} = {2}\times{a}\]

\[{a}^{2} = {a}\times{a}\]

Yn gyffredinol, \({a}^{m}\times{a}^{n} = {a}^{({m} + {n})}\)

Question

Symleiddia:

a) \({a}^{2}\times{a}^{3}\)

b) \({p}^{4}\times{p}^{2}\)

a) \({a}^{2} = {a}\times{a}\) ac \({a}^{3} = {a}\times{a}\times{a}\), felly:

\[{a}^{2}\times{a}^{3}={a}\times{a}\times{a}\times{a}\times{a}={a}^{5}\]

b) \({p}^{4}\times{p}^{2} = {p}^{({4} + {2})} = {p}^{6}\)

Cofia fod \({x}\) yr un fath ag \({x}^{1}\) wrth ddefnyddio’r rheol hon, ee \({n}^{3}\times{n} = {n}^{({3} + {1})} = {n}^{4}\)

Lluosi rhifau a llythrennau

Lluosa’r llythrennau a’r rhifau ar wahân:

Mae \({2}\times{3a}\) yn golygu \({2}\times{3}\times{a}\) sef \({6a}\)

Mae \({4a}\times{5a}\) yn golygu \({4}\times{a}\times{5}\times{a}\) sef \({4}\times{5}\times{a}\times{a} = {20a}^{2}\)

Question

Symleiddia \({2p}\times{3p}^{2}\)

\[{2p}\times{3p}^{2}\]

\[= {2}\times{p}\times{3}\times{p}\times{p}\]

\[= {2}\times{3}\times{p}\times{p}\times{p}\]

\[= {6p}^{3}\]