Ailseabra

A' tarraing ghrafan

Gus graf loidhne-dhìreach a tharraing:

  • dèan clàr
  • sgrìobh co-chomharran nam puingean air an loidhne
  • cleachd axes fhreagarrach agus càirich na puingean air an loidhne.

Eisimpleir

1. Tarraing an graf aig \(y = 2x + 1\)

\[x\]-2-1012
obrachadh\[2 \times ( - 2) + 1\]\[2 \times ( - 1) + 1\]\[2 \times ( 0) + 1\]\[2 \times ( 1) + 1\]\[2 \times ( 2) + 1\]
\[y\]-3-1135

2. Na co-chomharran: (-2, -3), (-1, -1), (0, 1), (1, 3) agus (2, 5)

3.

Straight line graph showing y = 2x + 1
Question

Tarraing an loidhne dhìreach le co-aontar \(y = 3x - 2\)

\[x\]-2-1012
obrachadh\[3 \times ( - 2) - 2\]\[3 \times ( - 1) - 2\]\[3 \times ( 0) - 2\]\[3 \times ( 1) - 2\]\[3 \times ( 2) - 2\]
\[y\]-8-5-214

Na co-chomharran: (-2, -8), (-1, -5), (0, -2), (1, 1) agus (2, 4)

Straight line graph showing y = 3x + 2

Loidhneachan sònraichte

Tha an aon chaisead aig loidhneachan co-shìnte.

2 parallel diagonal lines

Tha caisead neo-mhìnichte aig loidhneachan bheartagail.

Co-aontar \(x = a\)

Vertical line

Tha caisead de neoni aig loidhneachan còmhnard.

Co-aontar \(y = b\)

Horizontal line