Ail isradd a thrydydd isradd

Ail isradd

Y gwrthwyneb i sgwario rhif ydy canfod yr ail isradd.

Diagram i ddangos yr ail isradd

Ail isradd \({16}\) ydy \({4}\) (achos \({4}^{2} = {4}\times{4} = {16}\)).

Ail isradd \({25}\) ydy \({5}\) (achos \({5}^{2} = {5}\times{5} = {25}\)).

Ail isradd \({100}\) ydy \({10}\) (achos \({10}^{2} = {10}\times{10} = {100}\)).

Question

Beth ydy ail isradd \({4}\)?

\({2}\times{2} = {4}\), felly \({2}\) ydy ail isradd \({4}\).

Ystyr y symbol \(\sqrt{}\) ydy ail isradd, felly

Ystyr \(\sqrt{36}\) ydy 'ail isradd \({36}\)', ac

Ystyr \(\sqrt{81}\) ydy 'ail isradd \({81}\)'.

Fe weli di fotwm ail isradd ar dy gyfrifiannell hefyd.

Trydydd isradd

Y gwrthwyneb i giwbio rhif ydy canfod y trydydd isradd.

Diagram i ddangos y trydydd isradd

Ystyr y symbol \(\sqrt[3]{}\) ydy trydydd isradd, felly

\(\sqrt[3]{27}\) ydy \({3}\) (achos \({3}\times{3}\times{3} = {27}\)).

\(\sqrt[3]{1000}\) ydy \({10}\) (achos \({10}\times{10}\times{10} = {1,000}\)).

Question

Beth ydy trydydd isradd \({8}\)?

\({2}\times{2}\times{2} = {8}\), felly \({2}\) ydy trydydd isradd \({8}\).