• Tha meudachd de 1 aig bheactoran aonaid.

'S e na bheactoran aonaid bunaiteach $$i = \left( \begin{array}{l}1\\ 0\\0\end{array} \right)$$, $$j=\left(\begin{array}{l}0\\1\\0\end{array}\right)$$ agus $$k = \left(\begin{array}{l} 0\\ 0\\1\end{array} \right)$$

Faodar bheactor sam bith a sgrìobhadh ann an teirmean de $$i$$, $$j$$ agus $$k$$. Mar eisimpleir:

$\left(\begin{array}{l}\,\,\,\,\,\,3\\\,\,\,\,\,4\\- 2\end{array} \right) = \left(\begin{array}{l}\,3\\0\\0\end{array} \right) + \left(\begin{array}{l}\,0\\4\\0\end{array} \right) + \left(\begin{array}{l}\,\,\,\,\,0\\\,\,\,\,\,0\\- 2\end{array} \right)$

$= 3\left(\begin{array}{l}1\\0\\0\end{array} \right) + 4\left( \begin{array}{l}0\\1\\0\end{array} \right) - 2\left( \begin{array}{l}0\\0\\1\end{array} \right)$

$= 3i + 4j - 2k$

Question

Sgrìobh $$\left( \begin{array}{l} \,\,\,\,\,5\\\,\,\,\,\,0\\ - 1\end{array} \right)$$ ann an teirmean de bheactoran aonaid.

$\left( \begin{array}{l} \,\,\,\,\,5\\\,\,\,\,\,0\\ - 1\end{array} \right) = 5i + 0j - 1k$

$= 5i - k$