Adding, subtracting, multiplying and dividing can be applied to mixed number fractions. Each has its own method that helps make sure the numerator and denominator are treated correctly.

Add these two fractions together.

\[\frac{2}{3} + \frac{1}{9}\]

\[\frac{3}{{12}}\]

\[\frac{7}{{9}}\]

\[\frac{1}{{4}}\]

Work out \(\frac{4}{7} + \frac{2}{5}\).

\[\frac{6}{12}\]

\[\frac{34}{35}\]

\[\frac{34}{70}\]

Subtract these two fractions.

\[\frac{4}{5} - \frac{1}{3}\]

\[\frac{3}{2}\]

\[\frac{3}{5}\]

\[\frac{7}{15}\]

Multiply these fractions.

\[\frac{6}{7} \times \frac{{14}}{{15}}\]

\[\frac{4}{5}\]

\[\frac{1}{15}\]

\[\frac{28}{35}\]

Divide these fractions.

\[\frac{2}{3} \div \frac{3}{4}\]

\[\frac{1}{2}\]

\[\frac{8}{9}\]

\[1\]

Add the fractions:

\[2\frac{1}{2} + 1\frac{1}{4}\]

\[2\frac{3}{4}\]

\[3\frac{3}{4}\]

\[3\frac{2}{6}\]

\[4\frac{3}{5} + 2\frac{3}{4}\]

\[1\frac{7}{{20}}\]

\[7\frac{7}{{20}}\]

\[6\frac{1}{{3}}\]

Subtract the fractions:

\[5\frac{2}{5} - 2\frac{2}{3}\]

\[4\frac{1}{{15}}\]

\[3\frac{11}{{15}}\]

\[2\frac{11}{{15}}\]

Multiply the fractions:

\[4\frac{4}{5} \times 1\frac{1}{9}\]

\[5\frac{1}{{3}}\]

\[5\frac{2}{{6}}\]

\[4\frac{4}{{45}}\]

Work out \(3\: \frac{1}{2}\:\times\:1\:\frac{3}{7}\) , giving your answer in its simplest form.

\[\frac{70}{40}\]

\[3\: \frac{3}{14}\]

\[5\]