Extrasolar planets

An artist's concept of the extrasolar planet HR 8799b


In 1992 scientists first detected a planet outside our Solar System, orbiting a pulsar. A few years later, the planet 51 Pegasi B was found orbiting a star similar to the Sun. Hundreds of these extrasolar planets, or exoplanets, have been found since.

Most exoplanets can only be detected indirectly because bright light from the stars that they orbit drowns them out. One method is to look for tiny wobbles in stars' positions caused by their gravitational interactions with orbiting planets.

Scientists are particularly interested in planets found in their stars' habitable zones.

Image: An artist's concept of the planet HR 8799b (NASA, ESA, and G. Bacon/STScI)

Watch and listen to clips from past programmes TV clips [7]

An artist's concept of the extrasolar planet HR 8799b


Hundreds of planets have been found orbiting other stars.

About Extrasolar planets

An exoplanet or extrasolar planet is a planet that does not orbit Earth's Sun and instead orbits a different star, stellar remnant, or brown dwarf. Over 1800 exoplanets have been discovered (1822 planets in 1137 planetary systems including 467 multiple planetary systems as of 29 September 2014). There are also free floating planets, not orbiting any star, which tend to be considered separately, especially if they are free floating gas giants, in which case they are often counted, like WISE 0855–0714, as low-mass brown dwarfs.

The Kepler mission space telescope has also detected a few thousand candidate planets, of which about 11% may be false positives. There is at least one planet on average per star. Around 1 in 5 Sun-like stars[a] have an "Earth-sized"[b] planet in the habitable zone,[c] with the nearest expected to be within 12 light-years distance from Earth. Assuming 200 billion stars in the Milky Way,[d] that would be 11 billion potentially habitable Earths, rising to 40 billion if red dwarf stars are included. The free-floating planets in the Milky Way possibly number in the trillions.

On 26 February 2014, NASA announced the discovery of 715 newly verified exoplanets around 305 stars by the Kepler Space Telescope. These exoplanets were checked using a statistical technique called "verification by multiplicity". Prior to these results, most confirmed planets were gas giants comparable in size to Jupiter or larger as they are more easily detected, but the Kepler planets are mostly between the size of Neptune and the size of Earth.

The nearest known exoplanet, if confirmed, would be Alpha Centauri Bb, but there is some doubt about its existence. Almost all of the planets detected so far are within the Milky Way; however, there have been a small number of possible detections of extragalactic planets. As of March 2014[update], the least massive planet known is PSR B1257+12 A, which is about twice the mass of the Moon. The most massive planet listed on the NASA Exoplanet Archive is DENIS-P J082303.1-491201 b, about 29 times the mass of Jupiter, although according to most definitions of a planet, it is too massive to be a planet and may be a brown dwarf instead. There are planets that are so near to their star that they take only a few hours to orbit and there are others so far away that they take thousands of years to orbit. Some are so far out that it is difficult to tell if they are gravitationally bound to the star. (See also: List of exoplanet extremes.)

For centuries philosophers and scientists supposed that extrasolar planets existed, but there was no way of detecting them or of knowing their frequency or how similar they might be to the planets of the Solar System. Various detection claims made in the nineteenth century were rejected by astronomers. The first confirmed detection came in 1992, with the discovery of several terrestrial-mass planets orbiting the pulsar PSR B1257+12. The first confirmation of an exoplanet orbiting a main-sequence star was made in 1995, when a giant planet was found in a four-day orbit around the nearby star 51 Pegasi. Some exoplanets have been imaged directly by telescopes, but the vast majority have been detected through indirect methods such as the transit method and the radial-velocity method.

The discovery of extrasolar planets has intensified interest in the search for extraterrestrial life, particularly for those that orbit in the host star's habitable zone where it is possible for liquid water (and therefore life) to exist on the surface. The search for extrasolar planets prompts the study of planetary habitability, which considers a wide range of factors in determining the suitability of an extrasolar planet for hosting life.

On 24 September 2014, NASA reported that HAT-P-11b is the first Neptune-sized exoplanet known to have a relatively cloud-free atmosphere and, as well, the first time molecules, namely water vapor, of any kind have been found on such a relatively small exoplanet.

Read more at Wikipedia

This entry is from Wikipedia, the user-contributed encyclopedia. If you find the content in the 'About' section factually incorrect, defamatory or highly offensive you can edit this article at Wikipedia.