Computer-generated image of dark matter's potential distribution

Dark matter

In the 1970s, an astronomer called Vera Rubin was measuring the velocities of stars in other galaxies and noticed something strange: the stars at the galaxies' edges moved faster than had been predicted. To reconcile her observations with the law of gravity, scientists proposed that there is matter we can't see and called it dark matter.

Physicists are racing to find subatomic particles that could be the missing dark matter, which is thought to make up about 26% of the energy density of the Universe.

Image: A computer-generated image of dark matter's potential distribution across millions of light years of space

Watch and listen to clips from past programmes TV clips [9] Radio Programmes [1]

Computer-generated image of dark matter's potential distribution

Introduction

Invisible matter helps to hold the Universe together.

About Dark matter

Dark matter is a kind of matter hypothesized in astronomy and cosmology to account for gravitational effects that appear to be the result of invisible mass. Dark matter cannot be seen directly with telescopes; evidently it neither emits nor absorbs light or other electromagnetic radiation at any significant level. It is otherwise hypothesized to simply be matter that is not reactant to light. Instead, the existence and properties of dark matter are inferred from its gravitational effects on visible matter, radiation, and the large-scale structure of the universe. According to the Planck mission team, and based on the standard model of cosmology, the total mass–energy of the known universe contains 4.9% ordinary matter, 26.8% dark matter and 68.3% dark energy. Thus, dark matter is estimated to constitute 84.5% of the total matter in the universe, while dark energy plus dark matter constitute 95.1% of the total content of the universe.

Astrophysicists hypothesized dark matter because of discrepancies between the mass of large astronomical objects determined from their gravitational effects and the mass calculated from the "luminous matter" they contain: stars, gas, and dust. Although based upon flawed or inadequate evidence, dark matter was postulated by Jan Oort in 1932 to account for the orbital velocities of stars in the Milky Way and by Fritz Zwicky in 1933 to account for evidence of "missing mass" in the orbital velocities of galaxies in clusters. Adequate evidence from galaxy rotation curves was discovered by Horace W. Babcock in 1939, but was not attributed to dark matter. The first to postulate dark matter based upon robust evidence was Vera Rubin in the 1960s–1970s, using galaxy rotation curves. Subsequently, many other observations have indicated the presence of dark matter in the universe, including gravitational lensing of background objects by galaxy clusters such as the Bullet Cluster, the temperature distribution of hot gas in galaxies and clusters of galaxies, and more recently the pattern of anisotropies in the cosmic microwave background. According to consensus among cosmologists, dark matter is composed primarily of a not yet characterized type of subatomic particle. The search for this particle, by a variety of means, is one of the major efforts in particle physics today.

Although the existence of dark matter is generally accepted by the mainstream scientific community, some alternative theories of gravity have been proposed, such as MOND and TeVeS, which try to account for the anomalous observations without requiring additional matter.

Read more at Wikipedia

This entry is from Wikipedia, the user-contributed encyclopedia. If you find the content in the 'About' section factually incorrect, defamatory or highly offensive you can edit this article at Wikipedia.