Plate tectonics

Earth's tectonic plates

Plate tectonics is an important theory developed in the 1960s to explain how the continents move across the Earth's surface.

Early 20th century geologist Alfred Wegener realised that the puzzle-like fit of many the continents was more than a coincidence, but he couldn't correctly explain what powered their movement.

Geologists now know that the Earth's outermost layer, the lithosphere, is divided into independently moving plates into which the continents are embedded. The plates "float" on a layer called the athenosphere.

There are different types of plate boundary. Spreading centres at mid-ocean ridges are where undersea volcanoes create new plate material. Subduction zones are where one plate sinks below another, causing volcanic eruptions and earthquakes and, sometimes, building mountains.

Image: Earth's tectonic plates with arrows indicating motion (credit: Gary Hincks/SPL)


Earth's tectonic plates Plate tectonics

TV clips (9)

Plate tectonics

Plate tectonics (from the Late Latin tectonicus, from the Greek: τεκτονικός "pertaining to building") is a scientific theory describing the large-scale motion of 7 large plates and the movements of a larger number of smaller plates of the Earth's lithosphere, over the last hundreds of millions of years. The theoretical model builds on the concept of continental drift developed during the first few decades of the 20th century. The geoscientific community accepted plate-tectonic theory after seafloor spreading was validated in the late 1950s and early 1960s.

The lithosphere, which is the rigid outermost shell of a planet (the crust and upper mantle), is broken up into tectonic plates. The Earth's lithosphere is composed of seven or eight major plates (depending on how they are defined) and many minor plates. Where the plates meet, their relative motion determines the type of boundary: convergent, divergent, or transform. Earthquakes, volcanic activity, mountain-building, and oceanic trench formation occur along these plate boundaries. The relative movement of the plates typically ranges from zero to 100 mm annually.

Tectonic plates are composed of oceanic lithosphere and thicker continental lithosphere, each topped by its own kind of crust. Along convergent boundaries, subduction carries plates into the mantle; the material lost is roughly balanced by the formation of new (oceanic) crust along divergent margins by seafloor spreading. In this way, the total surface of the lithosphere remains the same. This prediction of plate tectonics is also referred to as the conveyor belt principle. Earlier theories, since disproven, proposed gradual shrinking (contraction) or gradual expansion of the globe.

Tectonic plates are able to move because the Earth's lithosphere has greater strength than the underlying asthenosphere. Lateral density variations in the mantle result in convection. Plate movement is thought to be driven by a combination of the motion of the seafloor away from the spreading ridge (due to variations in topography and density of the crust, which result in differences in gravitational forces) and drag, with downward suction, at the subduction zones. Another explanation lies in the different forces generated by tidal forces of the Sun and Moon. The relative importance of each of these factors and their relationship to each other is unclear, and still the subject of much debate.

Read more at Wikipedia

This entry is from Wikipedia, the user-contributed encyclopedia. If you find the content in the 'About' section factually incorrect, defamatory or highly offensive you can edit this article at Wikipedia.