Yardangs in Dasht-e Lut, Iran

Rain, wind and ice constantly wear down the Earth's land surface and transport the resulting broken down rock and soil to the oceans in a process called erosion.

Left unchecked, erosion would transport all the Earth's dry land into the oceans, leaving a water world. It is only the movement of the Earth's plates, which builds mountains, that stops this happening.

Geologists are quite precise about what erosion is: The term erosion only covers the transportation of Earth materials. Rock and soil are altered while still in place by a process referred to as weathering. Weathering often makes rock and soil susceptible to erosion.

Image: The wind eroded ridges in this image are known as yardangs. These examples are in the Dasht-e Lut desert, Iran. (credit: George Steinmetz/SPL)


Yardangs in Dasht-e Lut, Iran Erosion

TV clips (7)


In earth science, erosion is the action of surface processes (such as water flow or wind) that remove soil, rock, or dissolved material from one location on the Earth's crust, then transport it away to another location. The particulate breakdown of rock or soil into clastic sediment is referred to as physical or mechanical erosion; this contrasts with chemical erosion, where soil or rock material is removed from an area by its dissolving into a solvent (typically water), followed by the flow away of that solution. Eroded sediment or solutes may be transported just a few millimetres, or for thousands of kilometres.

Natural rates of erosion are controlled by the action of geomorphic drivers, such as rainfall; bedrock wear in rivers; coastal erosion by the sea and waves; glacial plucking, abrasion, and scour; areal flooding; wind abrasion; groundwater processes; and mass movement processes in steep landscapes like landslides and debris flows. The rates at which such processes act control how fast a surface is eroded. Typically, physical erosion proceeds fastest on steeply sloping surfaces, and rates may also be sensitive to some climatically-controlled properties including amounts of water supplied (e.g., by rain), storminess, wind speed, wave fetch, or atmospheric temperature (especially for some ice-related processes). Feedbacks are also possible between rates of erosion and the amount of eroded material that is already carried by, for example, a river or glacier. Processes of erosion that produce sediment or solutes from a place contrast with those of deposition, which control the arrival and emplacement of material at a new location.

While erosion is a natural process, human activities have increased by 10-40 times the rate at which erosion is occurring globally. Excessive (or accelerated) erosion causes both "on-site" and "off-site" problems. On-site impacts include decreases in agricultural productivity and (on natural landscapes) ecological collapse, both because of loss of the nutrient-rich upper soil layers. In some cases, the eventual end result is desertification. Off-site effects include sedimentation of waterways and eutrophication of water bodies, as well as sediment-related damage to roads and houses. Water and wind erosion are the two primary causes of land degradation; combined, they are responsible for about 84% of the global extent of degraded land, making excessive erosion one of the most significant environmental problems world-wide.:2:1

Intensive agriculture, deforestation, roads, anthropogenic climate change and urban sprawl are amongst the most significant human activities in regard to their effect on stimulating erosion. However, there are many prevention and remediation practices that can curtail or limit erosion of vulnerable soils.

Read more at Wikipedia

This entry is from Wikipedia, the user-contributed encyclopedia. If you find the content in the 'About' section factually incorrect, defamatory or highly offensive you can edit this article at Wikipedia.

Other related BBC topics