Atmosphere

Sunset from Earth orbit

Earth's atmosphere is a layered mixture of gases, mainly nitrogen (78%) and oxygen (21%). Argon, water vapour, carbon dioxide and methane are among the other gases present in small amounts. The atmosphere helps to protect our planet from asteroid impacts and solar radiation.

The innermost layer, the troposphere, contains most of the planet's weather and extends out to 10–15km above the surface.

The next layer out, the stratosphere, is drier and less dense and extends out to about 50km. The Sun's UV light breaks down oxygen in the stratosphere to form the Earth's protective ozone layer.

The mesosphere, thermosphere, and ionosphere make up the remaining outer layers that extend out to about 100km.

Image: The rising Sun highlights Earth's atmosphere in this photo taken from the International Space Station (credit: NASA/SPL)

Introduction

Sunset from Earth orbit Atmosphere

TV clips (6)

Atmosphere

The atmosphere of Earth is a layer of gases surrounding the planet Earth that is retained by Earth's gravity. The atmosphere protects life on Earth by absorbing ultraviolet solar radiation, warming the surface through heat retention (greenhouse effect), and reducing temperature extremes between day and night (the diurnal temperature variation).

The common name given to the atmospheric gases used in breathing and photosynthesis is air. By volume, dry air contains 78.09% nitrogen, 20.95% oxygen, 0.93% argon, 0.039% carbon dioxide, and small amounts of other gases. Air also contains a variable amount of water vapor, on average around 1%. Although air content and atmospheric pressure vary at different layers, air suitable for the survival of terrestrial plants and terrestrial animals currently is only known to be found in Earth's troposphere and artificial atmospheres.

The atmosphere has a mass of about 5.15×1018 kg[citation needed], three quarters of which is within about 11 km (6.8 mi; 36,000 ft) of the surface. The atmosphere becomes thinner and thinner with increasing altitude, with no definite boundary between the atmosphere and outer space. The Kármán line, at 100 km (62 mi), or 1.57% of Earth's radius, is often used as the border between the atmosphere and outer space. Atmospheric effects become noticeable during atmospheric reentry of spacecraft at an altitude of around 120 km (75 mi). Several layers can be distinguished in the atmosphere, based on characteristics such as temperature and composition.

The study of Earth's atmosphere and its processes is called atmospheric science or aerology. Early pioneers in the field include Léon Teisserenc de Bort and Richard Assmann.

Read more at Wikipedia

This entry is from Wikipedia, the user-contributed encyclopedia. If you find the content in the 'About' section factually incorrect, defamatory or highly offensive you can edit this article at Wikipedia.

BBC © 2014 The BBC is not responsible for the content of external sites. Read more.

This page is best viewed in an up-to-date web browser with style sheets (CSS) enabled. While you will be able to view the content of this page in your current browser, you will not be able to get the full visual experience. Please consider upgrading your browser software or enabling style sheets (CSS) if you are able to do so.