'Body on a chip' uses 3D printed organs to test vaccines

The 3D printer that will be used to print miniature organs for the 'body on a chip' system The 3D printer that will be used to print miniature organs for the 'body on a chip' system

Related Stories

Miniature human organs developed with a modified 3D printer are being used to test new vaccines in a lab in the US.

The "body on a chip" project replicates human cells to print structures which mimic the functions of the heart, liver, lung and blood vessels.

The organs are then placed on a microchip and connected with a blood substitute, allowing scientists to closely monitor specific treatments.

The US Department of Defense has backed the new technology with $24m (£15m).

Bioprinting, a form of 3D printing which, in effect, creates human tissue, is not new. Nor is the idea of culturing 3D human tissue on a microchip.

Start Quote

It works better than testing on animals”

End Quote Dr Anthony Atala Wake Forest Institute for Regenerative Medicine

But the tests being carried out at the Wake Forest Institute for Regenerative Medicine in North Carolina are the first to combine several organs on the same device, which then model the human response to chemical toxins or biologic agents.

Printing organs

The modified 3D printers, developed at Wake Forest, print human cells in hydrogel-based scaffolds.

The lab-engineered organs are then placed on a 2in (5cm) chip and linked together with a circulating blood substitute, similar to the type used in trauma surgery.

The blood substitute keeps the cells alive and can be used to introduce chemical or biologic agents, as well as potential therapies, into the system.

Sensors which measure real-time temperature, oxygen levels, pH and other factors feed back information on how the organs react and - crucially - how they interact with each other.

Dr Anthony Atala, institute director at Wake Forest and lead investigator on the project, said the technology would be used both to "predict the effects of chemical and biologic agents and to test the effectiveness of potential treatments".

Miniature tissues samples can be exposed to toxins as well as potential treatments Miniature tissue samples can be exposed to toxins as well as potential treatments

"You are actually testing human tissue," he explained.

"It works better than testing on animals."

Anti-terrorism

A group of experts from around the US is involved in putting together the technology, which will carry out toxicity testing and identification.

The funding for the project was awarded by the Defense Threat Reduction Agency (DTRA), a division of the US government which combats nuclear, chemical and biological weapons.

The tests being carried out at Wake Forest "would significantly decrease the time and cost needed to develop medical countermeasures" for bioterrorism attacks, said Dr Clint Florence, acting branch chief of vaccines within the Translational Medical Division at DTRA.

Wake Forest said it was able to test for antidotes to sarin gas, recently used against civilians in Syria.

Printed house

Dr Atala, whose field is regenerative medicine, said the bioprinting technology was first used at Wake Forest for building tissues and organs for replacement in patients.

His team had managed to replicate flat organs, such as skin, tubular organs such as blood vessels, and even hollow non-tubular organs like the bladder and the stomach, which have more complex structures and functions.

But building solid organs like the heart and the liver is the hardest challenge yet.

A combination microscope and incubator is used to image tissue over time A combination microscope and incubator is used to image tissue over time

It takes about 30 minutes just to print a miniature kidney or heart, which is the size of a small biscuit.

"There are so many cells per centimetre that making a big organ is quite complex," Dr Atala told the BBC.

But the bioprinting of full size solid organs might not be far away.

"We are working on creating solid organ implants," said Dr Atala.

Bioink containing various types of cell is printed into moulds made from agarose gel. Bioink containing various types of cell is printed into moulds made from agarose gel.
Bioink After several days the bioink fuses and the agarose support is removed. The tissue is put into a bioreactor and given low frequency stimulation to mature the muscle fibres.

More on This Story

Related Stories

The BBC is not responsible for the content of external Internet sites

More Technology stories

RSS

Features

  • Cesc FabregasFair price?

    Have some football clubs overpaid for their new players?


  • Woman and hairdryerBlow back

    Would banning high-power appliances actually save energy?


  • Members of staff at James Stevenson Flags hold a Union Jack and Saltire flag UK minus Scotland

    Does the rest of the UK care if the Scots become independent?


  • Women doing ice bucket challengeChill factor

    How much has the Ice Bucket Challenge achieved?


  • Women in front of Windows XP posterUpgrade angst

    Readers share their experiences of replacing their operating system


BBC © 2014 The BBC is not responsible for the content of external sites. Read more.

This page is best viewed in an up-to-date web browser with style sheets (CSS) enabled. While you will be able to view the content of this page in your current browser, you will not be able to get the full visual experience. Please consider upgrading your browser software or enabling style sheets (CSS) if you are able to do so.