Planck telescope: A map of all the 'stuff' in the cosmos

Map of distribution of matter across the visible universe

Europe's Planck telescope, which last week showed us a picture of the oldest light streaming across the Universe, has another trick up its sleeve.

It has also mapped the distribution of all the matter in the cosmos.

This was done by analysing the subtle distortions in the ancient light introduced as it passed by the matter.

The effect is a direct consequence of Einstein's theory of general relativity which tells us that space is warped by the presence of mass.

Prof Simon White likens it to the way light is bent as it passes through the lumpiness of an old glass window pane.

"If you know what you're looking at outside, you can use the distortions to say something about the glass," the Planck researcher said.

"There have been 'gravitational lensing' detections before over small areas, but this is the first time we've been able to do this kind of thing over the whole sky," he told BBC News.

The new map is a smart byproduct of the European Space Agency (Esa) telescope's main mission which is to survey the Cosmic Microwave Background, or CMB - a pervasive but faint glow of long-wavelength radiation that comes to us from the very edge of the observable Universe.

Planck artist impression The Planck satellite was launched in 2009 to map the Cosmic Microwave Background

That light essentially carries a record of all the intervening structure it has encountered on its journey.

What you see in the map on this page, split across the two hemispheres of the sky, is the sum of all the matter/mass along the line of sight.

Red denotes those regions where there is more matter/mass than average; and blue denotes regions where there is less than average.

The white edging in the North/South projections is the plane of our Milky Way Galaxy.

This great mass of stars makes it impossible to discern the delicate gravitationally lensed distortions and the region is simply masked out.

The map is a very complex thing to produce, and reflects not only the extraordinary sensitivity and resolution of Planck but also the immense sophistication now possible in the statistical analysis of the telescope's data.

Scientists have checked the map against the distribution of matter obtained by other means.

In the near Universe, for example, it should fit with the detailed information we now have on the way clusters of galaxies are dotted across the sky. And it does.

For the more distant parts of the Universe, Planck itself can do the test. It can use its High Frequency Instrument to look for the infrared emission from dust that is warmed by stars associated with far-off galaxies.

The pattern in this light acts as a kind of proxy for the history of star formation, and therefore a history of structure in the cosmos. Again, it agrees well with what the new Planck map is telling us about the distribution of matter/mass.

Big galaxy clusters Planck has now catalogued more than 1,000 big galaxy clusters - many new to science

Of course, it is thanks to Planck that we now know there is slightly more "stuff" out there than we thought, even if most of it is in a form beyond direct observation.

The analysis of the CMB data, released last Thursday, indicates that only 15.5% of the Universe's matter is what we would call "normal" - that is, the atomic material from which planets, stars and galaxies are built.

Planck's cosmic numbers

  • The telescope has produced a new contents list for the Universe:
  • 4.9% normal matter - atoms, the stuff from which we are all made
  • 26.8% dark matter - the unseen material holding galaxies together
  • 68.3% dark energy - the mysterious component accelerating cosmic expansion
  • The number for dark energy is lower than previously estimated
  • Planck has also measured the expansion rate of the Universe
  • This is described by a value that scientists refer to as the Hubble Constant
  • It is found to be 67.2 km per second, per megaparsec (or per 3.2 million light-years)
  • This suggests the Universe came into existence about 13.8 billion years old

The rest (84.5%) is "dark matter" whose precise nature currently eludes scientific description.

The map at the top of this page makes no distinction. It is an integration of both normal and dark matter.

Planck can, however, be used to find a lot of previously unobserved regions of normal matter. These are large galaxy clusters.

They are identified using another clever trick named after the two Soviet physicists who proposed it in the 1960s.

Rashid Sunyaev and Yakov Zel'dovich said that a small fraction of the CMB light particles, or photons, should get a little kick in energy when they pass through the hot gas found in big clusters.

Once more, the effect is subtle but very characteristic, and Planck has used this Sunyaev-Zel'dovich method to catalogue more than 1,000 big cluster candidates, many of which had not previously been on the books.

"Planck is a discovery machine," the Esa project scientist Dr Jan Tauber told BBC News. "The data is now out there and people will really start to dig into it. There are a lot of scientists inside the Planck Collaboration but there are many more that are outside. They are going to find some great new uses for the data."

CMB - The 'oldest light' in the Universe

Planck 2013 data
  • Theory says 380,000 years after the Big Bang, matter and light "decoupled"
  • Matter went on to form stars and galaxies; the light spread out and cooled
  • The light - the CMB - now washes over the Earth at microwave frequencies
  • Tiny deviations from this average glow appear as mottling in the map (above)
  • These fluctuations reflect density differences in the early distribution of matter
  • Their pattern betrays the age, shape and contents of the Universe, and more

Follow Jonathan on Twitter

Jonathan Amos, Science correspondent Article written by Jonathan Amos Jonathan Amos Science correspondent

More on This Story

Related Stories


This entry is now closed for comments

Jump to comments pagination
  • rate this

    Comment number 39.

    Planck greatly increases the amount of data, compared to the initial Sloane Sky Survey.
    We think there is 'dark matter', an 'adjunct' to 'dark energy' comprising most non 'hadronic' (normal)matter in the universe.

    As with the 'Higgs Boson', which was theorised by. Peter Higgs, as giving 'normal' matter it's form, there is no 'god' around.

    'Higgs' Boson=Sigma 7
    'god'=Sigma 0


  • rate this

    Comment number 38.


    They're not really reporting it as "cast iron" fact. Just saying that this is the best information we have to date. Scientists are pretty sure that the dark matter is there, they just don't know what it is or how to detect it. These discoveries will come later...

  • rate this

    Comment number 37.

    Fantastic, I wonder what this will branch off into and what new discoveries are waiting out there in light of this. Shame that the vast majority of the public wont get why we need more money spent on areas like this.

  • rate this

    Comment number 36.

    Dear Mr Amos, "very complex", "extraordinary sensitivity and resolution", "immense sophistication" all in one short paragraph makes for painful reading in an otherwise good article. So good, that you actually avoided mentioning Big Bang - almost.

  • rate this

    Comment number 35.

    Find this stuff absolutely fascinating. Not only the fact that science has given us that bit more understanding of the universe, but the fact that it also provides another nail for the coffin of the Sky Pixie band and their fantasy view of it

  • rate this

    Comment number 34.

    84.5% of the universe is unexplainable.If the experts are uncertain then why do journalists report this stuff as cast iron fact?

  • rate this

    Comment number 33.

    As someone who believes in a certain deity i will just say good job, and to the engineers who makes all these dreams happen well done. He guides us all :-)

  • rate this

    Comment number 32.

    General Relativity could turn out to be like Newton's Laws. Whilst not exactly correct, they work in so many situations that they're still a useful tool in describing the universe.

  • rate this

    Comment number 31.

    Reid Barnes
    General Relativity is not an easy theory to break, lots of predictions it has made have come true and any theory that follows must follow all of them. - Frame dragging, gravitational lensing, gravitational time dilation.
    GR does fail when it comes to FTL spaces, general causality, or to the physics of black holes - but these are all beyond the edge of current physics or measurement..

  • rate this

    Comment number 30.

    "The effect is a direct consequence of Einstein's theory of general relativity which tells us that space is warped…", it is said, but the non-Euclidean geometry of this theory, it turns out, is self-contradicting.

  • rate this

    Comment number 29.

    OK all you physicists don't forget some praise for the engineers that made it happen!

  • rate this

    Comment number 28.

    " should be able to explain physics to a barmaid!"

    When I started out as an undergrad physicist, we were so geeky it was the other way around.

  • rate this

    Comment number 27.


    Re @8. jobsworthwatch

    Well done!

    Ha! thanks!

    Being as Planck is such a HOT topic at the moment I thought I'd mention it.

    Bits made in a garage....says something about the budget though for the mission?

  • rate this

    Comment number 26.

    why is everyone voting down the people who refer to religious comments being voted down!? what a bizzare twist of fate. I'm ok with it though as most of you see the importance of science. Those who don't and voted me down, I assume you know little so don't know what you are pressing. either way, no wait you all missed the point and should talk on science items

  • rate this

    Comment number 25.

    ''Europe's Planck telescope, which last week showed us a picture of the oldest light streaming across the Universe, has another trick up its sleeve.
    It has also mapped the distribution of all the matter in the cosmos.''


    Even 'dark matter'...?

    You know... the stuff that makes up the majority of matter in the uiniverse...

    No? Thought not!

  • rate this

    Comment number 24.

    @8. jobsworthwatch - "Back in 2003 having been made redundant and then, working self-employed from home, I made a part for this spacecraft in my garage. I checked earlier this week with the customer to see if the part I made had actually been used on the spacecraft. Astonishingly the answer was yes!"


    Well done!

  • rate this

    Comment number 23.

    22 ConnorMacLeod - I thought it was relitavely clear, but perhaps because I've studied a lot of physics I read matter in its scientific meaning rather than the more general meaning of "stuff". Similar to the different meanings of "theory".

    Suppose it goes back to that old quote that you should be able to explain physics to a barmaid!

  • rate this

    Comment number 22.


    You should see from my comment 20 that I already have. My gripe is with the fact that this was not expressed very well in the article. Although the rest of the article is good, the writer needs to ensure there is as little scope for misunderstanding as possible as it is being read by the general public.
    2 other posts also pointed out the same confusion.

  • rate this

    Comment number 21.

    @18 his numbers are sound, you just need to re-read and actually understand what he has written....

  • rate this

    Comment number 20.

    12.Drunken Hobo

    Just noticed your comment, which answers my post no. 18.
    Indeed, this is correct as the ratios match up ( 4.9 / 26.8 = 15.5 / 84.5) allowing for rounding.
    Think this could have been made a little clearer by Jonathan in the article though.


Page 1 of 2



BBC © 2014 The BBC is not responsible for the content of external sites. Read more.

This page is best viewed in an up-to-date web browser with style sheets (CSS) enabled. While you will be able to view the content of this page in your current browser, you will not be able to get the full visual experience. Please consider upgrading your browser software or enabling style sheets (CSS) if you are able to do so.