Euclid telescope to probe dark universe

 
Euclid (Esa) Euclid will conduct its surveys 1.5 million kilometres from Earth on its "night side"

Europe has given the final go-ahead to a space mission to investigate the "dark universe".

The Euclid telescope will look deep into the cosmos for clues to the nature of dark matter and dark energy.

These phenomena dominate the Universe, and yet scientists concede they know virtually nothing about them.

European Space Agency (Esa) member states made their decision at a meeting in Paris. Euclid should be ready for launch in 2020.

Esa nations had already selected the telescope as a preferred venture in October last year, but Tuesday's "adoption" by the Science Programme Committee (SPC) means the financing and the technical wherewithal is now in place to proceed.

The cost to Esa of building, launching and operating Euclid is expected to be just over 600m euros (£480m; $760m). Member states will provide Euclid's visible wavelength camera and a near-infrared camera/spectrometer, and its ground and data-handling elements, taking the likely cost of the whole endeavour beyond 800m euros.

The US has been offered, and will accept, a junior role in the mission valued at around 5%. The American space agency (Nasa) will pay for this by picking up the tab for the infrared detectors needed on Euclid. A memorandum of understanding to this effect will be signed between the agencies in due course.

"We have negotiated a detailed text with Nasa, which both parties consider final, and it is ready for signature," said Dr Fabio Favata, Esa's head of science planning.

"It will mean a small, commensurate number of US scientists will be welcomed into the Euclid Consortium," he told BBC News.

The consortium is the team that will have access to Euclid's data.

The adoption also will now trigger the release to industry of invitations to tender. Europe's two big space companies - Astrium and Thales Alenia Space - are certain to bid to build Euclid.

Dark energy and dark matter mysteries

Dark matter distribution simulation
  • Gravity acting across vast distances does not seem to explain what astronomers see
  • Galaxies, for example, should fly apart; some other mass must be there holding them together
  • Astrophysicists have thus postulated "dark matter" - invisible to us but clearly acting on galactic scales
  • At the greatest distances, the Universe's expansion is accelerating
  • Thus we have also "dark energy" which acts to drive the expansion, in opposition to gravity
  • The current theory holds that 73% of the Universe is dark energy, 23% is dark matter, and just 4% the kind of matter we know well

A key task of the telescope will be to map the distribution of dark matter, the matter that cannot be detected directly but which astronomers know to be there because of its gravitational effects on the matter we can see.

Galaxies, for example, could not hold their shape were it not for the presence of some additional "scaffolding". This is presumed to be dark matter - whatever that is.

Although this material cannot be seen directly, the telescope can plot its distribution by looking for the subtle way its mass distorts the light coming from distant galaxies. Hubble famously did this for a tiny patch on the sky - just two square degrees.

Euclid will do it across 15,000 square degrees of sky - a little over a third of the heavens.

Dark energy represents a very different problem, and is arguably one of the major outstanding issues facing 21st-Century science.

This mysterious force appears to be accelerating the expansion of the Universe. Recognition of its existence and effect in 1998 earned three scientists a Nobel Prize last year.

Euclid will investigate the phenomenon by mapping the three-dimensional distribution of galaxies.

The patterns in the great voids that exist between these objects can be used as a kind of "yardstick" to measure the expansion through time.

Again, ground-based surveys have done this for small volumes of the sky; Euclid however will measure the precise positions of some two billion galaxies out to about 10 billion light-years from Earth.

History of the Universe
  • Before 1998's Nobel Prize-winning research, it was assumed gravity was slowing the expansion
  • Now scientists say the expansion is accelerating, pushing galaxies apart at a faster and faster rate
  • Euclid's 3-D galaxy maps will trace dark energy's influence over 10 billion years of cosmic history

Euclid was selected as a "medium class" mission, meaning its cost to Esa should be close to 475m euros. The fact that member states are going 125m euros beyond this "guide price" gives an indication of just how highly this mission is regarded.

"Esa have realised this science is so compelling, they just have to do it," said Prof Bob Nichol from the University of Portsmouth, UK.

"They've got a great design and great team, and bravo to them for getting on with it. Every so often you do things that are revolutionary, and Euclid will be one of those transformational missions."

Flying Euclid will give Europe an important lead in a key area of astrophysics.

The Americans would dearly love to fly their own version of Euclid, but there is no money in the Nasa budget currently to make this happen.

The US agency was recently gifted two Hubble-class spy telescopes by the National Reconnaissance Office, but even with this donation Nasa is short of the hundreds of millions of dollars needed to turn one of them into a dark mission.

One key design difference between the US concept and Euclid would be the emphasis the American mission would place on using exploded stars, supernovas, as markers to measure the expansion rate of the Universe.

This was the approach used by the Nobel Prize winners (Saul Perlmutter and Adam Riess of the US and Brian Schmidt of Australia). It is not a technique in the primary science of Euclid, but Prof Nichol said it could be deployed at some stage.

Hubble artist's impression Hubble used the so-called "weak lensing" technique to map dark matter in a small patch of sky

"That option is still there and is still being debated," he told me.

"It could be done at the end of the main mission, if we get an extension. We could also do some supernova work during the mission. If certain parts of the sky that we want to look at are not immediately amenable, we could go look for supernovas.

"I believe we could do a fantastic supernova survey, and the Nobel Prize winners are very much involved in how to build such a programme into Euclid. They're brilliant scientists and it would be awesome to have them on board."

Major player

British scientists and engineers will play a key role in Euclid.

The UK will lead the production of the telescope's optical digital camera - one of the largest such cameras ever put in space.

The instrument will produce pictures of the sky more than 100 times larger than Hubble can. This will minimise the amount of "stitching" of images required to build Euclid's maps, making it easier to trace some of the subtle effects astronomers are trying to detect.

When its investments in the Esa portion of the budget and the visible instrument are combined, the UK's total contribution to Euclid comes out at over 100 million euros (£80m).

 
Jonathan Amos, Science correspondent Article written by Jonathan Amos Jonathan Amos Science correspondent

Sentinel system pictures Napa quake

Europe's new multi-billion-euro Sentinel programme returns its first earthquake analysis - of the Magnitude 6.0 tremor that hit California's wine-producing Napa region last month.

Read full article

More on This Story

Related Stories

The BBC is not responsible for the content of external Internet sites

Comments

This entry is now closed for comments

Jump to comments pagination
 
  • rate this
    -1

    Comment number 240.

    This is my first, and last visit to this blog.

    A science-based debate, reduced to a monologue and anonymous rating.

    Well all you raters, incapable of debate... "you did not impress!"

    Goodnight.

  • rate this
    0

    Comment number 239.

    236 commonsense - I think most people would love a manned Mars mission, but that doesn't mean we should stop exploring other areas. The theoretical physicists that will be working on this telescope would also be hopeless at manned spaceflight but excellent at this project.
    We could land humans on Mars, but currently there is little to gain scientifically and it's still very difficult to do.

  • rate this
    -2

    Comment number 238.

    236. commonsense

    We get 70 years. During that time, we experience changes that leave us trying to keep up with it all.

    June 22, 3012 will arrive. Guaranteed.

    Can you imagine...

  • rate this
    0

    Comment number 237.

    236.commonsense

    I'm not sure about Mars, but a moon mission would be nice. I just wonder when we'll be in a position to visit the moon again.

  • rate this
    +1

    Comment number 236.

    All this universe observation is interesting, but it would be nice if we devoted more money and resources to developing our solar system first. Like say, a Mars mission, maybe a settlement, the future is bright, but when resources are wasted on telescopes the future is further away...

 

Comments 5 of 240

 

Features

  • RihannaCloud caution

    After celebrity leaks, what can you do to safeguard your photos?


  • Cesc FabregasFair price?

    Have some football clubs overpaid for their new players?


  • Woman and hairdryerBlow back

    Would banning high-power appliances actually save energy?


  • Rack of lambFavourite feast

    Is the UK unusually fond of lamb and potatoes?


  • Members of staff at James Stevenson Flags hold a Union Jack and Saltire flag UK minus Scotland

    Does the rest of the UK care if the Scots become independent?


BBC © 2014 The BBC is not responsible for the content of external sites. Read more.

This page is best viewed in an up-to-date web browser with style sheets (CSS) enabled. While you will be able to view the content of this page in your current browser, you will not be able to get the full visual experience. Please consider upgrading your browser software or enabling style sheets (CSS) if you are able to do so.