Big science's trickle-down effect

 
The ALICE accelerator Fast mover: The ALICE accelerator

One of the main justifications for the billions we spend on big, state-of-the-art science projects like the Large Hadron Collider is not the discoveries they make (although those are obviously important in their own right), but the way in which these showcase projects drive technological innovation across a range of other applications.

So the space race put a man on the moon, but it also generated dramatic advances in computing, engineering, materials science and navigation - advances that we all take for granted today.

In the same way the last big atom smasher at Cern, the LEP, gave us MRI scanners and the World Wide Web.

Now another team of physicists, this time working with the ALICE accelerator at the Science and Techhnology Facilities Council's Daresbury Science Laboratory in Cheshire, believe they may have come up with their own unique contribution to medical science.

ALICE is an advanced prototype energy recovery accelerator that focuses the radiation generated by charged particles - in this case electrons - into a powerful infrared laser. A light source that, as well as probing the atomic structure of matter, can illuminate the biochemical composition of human tissue.

With the aid of a scanning electron microscope the team, led by the Professor Peter Weightman at the University of Liverpool, have applied this intense infrared spotlight to tease out the subtle differences between healthy and cancerous tissue in a series of biopsies taken from patients suffering from Barrett's Oesophagus - a benign precursor to oesophageal cancer.

Images of cancerous tissue ALICE has helped to generate these images of cancerous tissue

"Early diagnosis is the most important factor for improving the prognosis for patients suffering from oesophageal cancer," Professor Weightman explains. "The images we're generating with ALICE clearly show malignancy developing in cells, the signature of cancer. That's what gives it great potential as a diagnostic tool."

Oesophageal cancer is rapidly emerging as a serious, and intractable, problem. Now the ninth most common form of cancer worldwide, some 8,000 new cases are diagnosed in the UK every year.

The issue, according to Professor Mark Pritchard, a consultant gastroenterologist at the Royal Liverpool Hospital, is that by the time patients present their doctor with symptoms it's often already too late.

"Most people go to their GP when they have difficulty swallowing, that's the most common symptom. But by that time the cancer is often quite advanced. In many cases it has spread outside the oesophagus and treatment is not possible or successful".

Translating this new discovery into a practical application that could be used in a clinical setting - perhaps at the end of an endoscope - remains a huge engineering challenge. But the results demonstrate an important proof of principle: that the infrared light source generated by ALICE can be used to detect the early biochemical changes within tissues as cancer develops.

Chalk another medical advance up to physics.

 
Tom Feilden, Science correspondent, Today programme Article written by Tom Feilden Tom Feilden Science correspondent, Today

Citizen science is the new black

Tom Feilden examines citizen science - the trend for involving amateurs in research projects - and asks whether it is real science or just good PR.

Read full article

Comments

This entry is now closed for comments

Be the first to comment

Features

  • Two women in  JohanesburgYour pictures

    Readers' photos on the theme of South Africa


  • Worcestershire flagFlying the flag

    Preserving the identities of England's counties


  • Female model's bottom in leopard skin trousers as she walks up the catwalkBum deal

    Why budget buttock ops can be bad for your health


  • The OfficeIn pictures

    Fifty landmark shows from 50 years of BBC Two


  • French luxury Tea House, Mariage Freres display of tea pots Tea for tu

    France falls back in love with tea - but don't expect a British cuppa


BBC © 2014 The BBC is not responsible for the content of external sites. Read more.

This page is best viewed in an up-to-date web browser with style sheets (CSS) enabled. While you will be able to view the content of this page in your current browser, you will not be able to get the full visual experience. Please consider upgrading your browser software or enabling style sheets (CSS) if you are able to do so.