Spiral-toothed fossil mystery solved

Artist's impression of ancient spiral-tooth fish Helicoprion Ray Troll's illustration of the squid-eating fish will feature in a museum exhibition

Related Stories

An ancient spiral-toothed fish has been reconstructed from fossil evidence by scientists.

US researchers used CT scans to build a computer model of what Helicoprion looked like and how it ate.

They were also able to resolve a continuing puzzle over whether the unique saw-like spirals were located inside or outside the mouth.

The findings show the animals were more closely related to modern chimaeras, or ratfish, than sharks.

The study is published by researchers from Idaho State University in the Royal Society journal Biology Letters.

The university's Museum of Natural History has the largest public collection of fossilised Helicoprion in the world.

Jaw-dropping facts

How did whales develop their enormous mouths?

Watch David Attenborough explain jaw evolution

See into the mouths of sharp-toothed sharks

The fish lived 270 million years ago but because they were largely formed from cartilage, which does not preserve well, their fossil record comprises unusual spiral structures.

Referred to as "whorls", these features have been compared to spiralling saw blades and have puzzled the scientific community for over a century.

Early theories suggested that they were actually used for defence and were located on the fish's upper or lower jaws, or even the dorsal fin.

Dental records

In order to solve the mystery, Dr Leif Tapanila and colleagues investigated the most complete fossil in the collection.

The fossil, discovered in Idaho, has a whorl measuring 23cm with 117 individual teeth. Unlike other specimens, the fossil also includes impressions of the cartilage structures.

The team used a high-powered CT scan, which uses X-rays to create a detailed computer image, in order to fully analyse what was inside the rock.

"When we got the images back, we could easily see that we had the upper and lower jaw of the animals, as well as the spiral of teeth," said Dr Tapanila.

Artist's impression of ancient spiral-tooth fish Helicoprion An artist's impression shows how the teeth were positioned

"For the first time we were able to very clearly image how that spiral of teeth relates to the jaw."

The scientists found that the spiral was connected to the fish's lower jaw, in the back of the mouth.

"Imagine that... instead of having a tongue, you have this large spiral of teeth," Dr Tapanila explained.

"Only maybe a dozen teeth are poking up out of your lower jaw so you can bite."

"The rest of those teeth are stored inside and are not being used, those are your baby teeth - the teeth you had when you were younger."

Dr Tapanila said this discovery supports the argument that unlike sharks, which constantly replace their teeth, Helicoprion retained its teeth permanently.

Using the computer images, the team could build a 3D model of the jaw, to reveal how the tooth spiral worked.

"As the mouth closes, the teeth spin backwards... so they slash through the meat that they are biting into," Dr Tapanila told BBC Nature.

"The teeth themselves are very narrow: nice long, pointy, triangular teeth with serrations like a steak knife.

"As the jaw is closing and the teeth are spinning past whatever it's eating, it's making a very nice clean cut."

Of the 100 fossils of Helicoprion that have been discovered, very few show broken or worn teeth.

Helicoprion fossil The fossil shows the imprint of the spiralling teeth
Ancient diet

Dr Tapanila said that this evidence, combined with the "rolling and slicing" mechanism, provided clues to what the ancient fish ate.

"If this animal were eating other animals that were very hard or [had] hard armour plating or dense shells, you would expect more damage to their teeth.

"This leads us to believe that our animal was probably eating soft, squishy things like calamari. It was probably eating squid or its relatives that were swimming in the ocean at the time."

The study also highlighted the family connections of the ancient fish, categorising it with chimaeras and ratfish rather than sharks.

"One of the main ways that fish are identified is based on how the upper jaw connects to the rest of the skull," said Dr Tapanila.

"Because we have the upper jaw we can look at the bumps and grooves on it and see how it would have connected.

"It was fixed in two positions and was fused essentially to the brain tip... a feature that's distinctive for chimaeras and ratfish."

Following the reconstruction the jaw of the fish, the team is using inferred characteristics to create a scale model of the 4m animal for an exhibition at the Idaho State University Museum of Natural History this summer.

Based on fossil evidence, scientists believe the fish could have measured up to 7.6m long.

Join BBC Nature on Facebook and Twitter @BBCNature.

More on This Story

Related Stories

The BBC is not responsible for the content of external Internet sites

More from nature

  • Cardinal fish and ostracodFish filmed spitting 'fireworks'

    Film crew captures ostracods' spectacular defensive lightshow that makes predatory fish spit them out.

  • Arapaima'Locally extinct'

    A giant fish which used to dominate the Amazon river is now absent in many areas

  • DragonflyRapid reactions

    Dragonfly's super quick reactions recorded in slow motion by BBC film-makers

  • Wingless adult male of the midge Belgica antarcticaExtreme survivor

    Antarctic midge's small genome may be an adaptation to its extreme environment

  • Myotis midastactus specimen (previously identified as Myotis simus)Golden discovery

    A bat from Bolivia is described as a new species by scientists

  • Dinosaurs 'shrank' to become birds

    Huge meat-eating, land-living dinosaurs evolved into birds by constantly shrinking for over 50 million years, new research shows.

  • Would we starve without bees?

    Honey bees are under threat, and as pollination significantly contributes to the food we eat, what would we do without them?

  • Eggshells may act like 'sunblock'

    Birds' eggs show adaptations in pigment concentration and thickness to allow the right amount of sun for embryos, scientists say.

  • Female shrimps are more aggressive

    Female snapping shrimps are more aggressive than males when defending their territories despite their smaller claw size, a study shows.

BBC iWonder

  • Honey bee close-upInsect intelligence

    Are honey bees as smart as your sat nav?

  • Tyrannosaurus rex skull (c) Mark Williamson / Science Photo LibraryDinosaur dynasty

    One group of dinosaurs survived and their descendants can be seen all around us today

  • Brown rat cluse upRise of the rodent

    Reports of giant, 'super rats' are filling the headlines. But why are we being overrun by rats?

  • Cuckoo portraitHoliday hotspot

    What makes the UK such an attractive destination for visiting wildlife?

Awesome! And there's nothing common about such beauty.

Elaine Bernon on Facebook comments on the trio of common blue butterflies in our Photo of the Day.

Things To Do


More Nature Activities >

BBC © 2014 The BBC is not responsible for the content of external sites. Read more.

This page is best viewed in an up-to-date web browser with style sheets (CSS) enabled. While you will be able to view the content of this page in your current browser, you will not be able to get the full visual experience. Please consider upgrading your browser software or enabling style sheets (CSS) if you are able to do so.