'Brinicle' ice finger of death filmed in Antarctic

As brine from the sea ice sinks, a 'brinicle' forms threatening life on the sea floor with a frosty fate.

Related Stories

A bizarre underwater "icicle of death" has been filmed by a BBC crew.

With timelapse cameras, specialists recorded salt water being excluded from the sea ice and sinking.

The temperature of this sinking brine, which was well below 0C, caused the water to freeze in an icy sheath around it.

Where the so-called "brinicle" met the sea bed, a web of ice formed that froze everything it touched, including sea urchins and starfish.

The unusual phenomenon was filmed for the first time by cameramen Hugh Miller and Doug Anderson for the BBC One series Frozen Planet.

Creeping ice

HOW DOES A BRINICLE FORM?

Freezing sea water doesn't make ice like the stuff you grow in your freezer. Instead of a solid dense lump, it is more like a seawater-soaked sponge with a tiny network of brine channels within it.

In winter, the air temperature above the sea ice can be below -20C, whereas the sea water is only about -1.9C. Heat flows from the warmer sea up to the very cold air, forming new ice from the bottom. The salt in this newly formed ice is concentrated and pushed into the brine channels. And because it is very cold and salty, it is denser than the water beneath.

The result is the brine sinks in a descending plume. But as this extremely cold brine leaves the sea ice, it freezes the relatively fresh seawater it comes in contact with. This forms a fragile tube of ice around the descending plume, which grows into what has been called a brinicle.

Brinicles are found in both the Arctic and the Antarctic, but it has to be relatively calm for them to grow as long as the ones the Frozen Planet team observed.

The icy phenomenon is caused by cold, sinking brine, which is more dense than the rest of the sea water. It forms a brinicle as it contacts warmer water below the surface.

Mr Miller set up the rig of timelapse equipment to capture the growing brinicle under the ice at Little Razorback Island, near Antarctica's Ross Archipelago.

"When we were exploring around that island we came across an area where there had been three or four [brinicles] previously and there was one actually happening," Mr Miller told BBC Nature.

The diving specialists noted the temperature and returned to the area as soon as the same conditions were repeated.

"It was a bit of a race against time because no-one really knew how fast they formed," said Mr Miller.

"The one we'd seen a week before was getting longer in front of our eyes... the whole thing only took five, six hours."

Against the odds
Hugh and cameras capture the brinicle (c) D Anderson Hugh had little room to position himself and the cameras under the ice

The location - beneath the ice off the foothills of the volcano Mount Erebus, in water as cold as -2C - was not easy to access.

"That particular patch was difficult to get to. It was a long way from the hole and it was quite narrow at times between the sea bed and the ice," explained Mr Miller.

"I do remember it being a struggle... All the kit is very heavy because it has to sit on the sea bed and not move for long periods of time."

As well as the practicalities of setting up the equipment, the filmmakers had to contend with interference from the local wildlife.

The large weddell seals in the area had no problems barging past and breaking off brinicles as well as the filming equipment.

"The first time I did a timelapse at the spot a seal knocked it over," said Mr Miller.

But the team's efforts were eventually rewarded with the first ever footage of a brinicle forming.

Frozen Planet is on at 21:00 GMT on Wednesday, 23 November on BBC One.

More on This Story

Related Stories

The BBC is not responsible for the content of external Internet sites

More from nature

  • Cardinal fish and ostracodFish filmed spitting 'fireworks'

    Film crew captures ostracods' spectacular defensive lightshow that makes predatory fish spit them out.

  • Arapaima'Locally extinct'

    A giant fish which used to dominate the Amazon river is now absent in many areas


  • DragonflyRapid reactions

    Dragonfly's super quick reactions recorded in slow motion by BBC film-makers


  • Wingless adult male of the midge Belgica antarcticaExtreme survivor

    Antarctic midge's small genome may be an adaptation to its extreme environment


  • Myotis midastactus specimen (previously identified as Myotis simus)Golden discovery

    A bat from Bolivia is described as a new species by scientists


  • Dinosaurs 'shrank' to become birds

    Huge meat-eating, land-living dinosaurs evolved into birds by constantly shrinking for over 50 million years, new research shows.

  • Would we starve without bees?

    Honey bees are under threat, and as pollination significantly contributes to the food we eat, what would we do without them?

  • Eggshells may act like 'sunblock'

    Birds' eggs show adaptations in pigment concentration and thickness to allow the right amount of sun for embryos, scientists say.

  • Female shrimps are more aggressive

    Female snapping shrimps are more aggressive than males when defending their territories despite their smaller claw size, a study shows.

BBC iWonder

  • Honey bee close-upInsect intelligence

    Are honey bees as smart as your sat nav?

  • Tyrannosaurus rex skull (c) Mark Williamson / Science Photo LibraryDinosaur dynasty

    One group of dinosaurs survived and their descendants can be seen all around us today


  • Brown rat cluse upRise of the rodent

    Reports of giant, 'super rats' are filling the headlines. But why are we being overrun by rats?


  • Cuckoo portraitHoliday hotspot

    What makes the UK such an attractive destination for visiting wildlife?


Awesome! And there's nothing common about such beauty.

Elaine Bernon on Facebook comments on the trio of common blue butterflies in our Photo of the Day.

Things To Do

RUN BY THE BBC AND PARTNERS

More Nature Activities >

BBC © 2014 The BBC is not responsible for the content of external sites. Read more.

This page is best viewed in an up-to-date web browser with style sheets (CSS) enabled. While you will be able to view the content of this page in your current browser, you will not be able to get the full visual experience. Please consider upgrading your browser software or enabling style sheets (CSS) if you are able to do so.